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Abstract 

A method of identifying the reaction mechanism in non-isothermal kinetics is presented 
based on the symmetry, width and height of the DTG curve. Using a computer program, 
which allows the calculation of a thermogravimetric curve from selected Arrhenius parame- 
ters, heating rate and reaction mechanism, it has been possible to study how these variables 
alter the shape of the DTG curves. It is shown that the value of a (fraction decomposed) at 
which the maximum rate is obtained is characteristic for any specific mechanism, and is 
altered only slightly by the magnitude of the Arrhenius parameters and the heating rate. As 
such, with complementary information based on the width of the DTG peaks, it is usually 
possible to identify the mathematical expression which describes the reaction. 

INTRODUCTION 

Non-isothermal determination of solid-state kinetic parameters has a 
number of advantages over conventional isothermal methods. However, the 
major drawback with this procedure is that there is no recognized tech- 
nique of evaluating the reaction mechanism f(a). 

The rate of reaction of a thermal decomposition can be described using 
the general equation 

da, A 
dT = pexp( -E/RT) ‘f(a) 

where /3 is the heating rate (dT/dt), and A and E are the pre-exponential 
factor and the activation energy, respectively. It is desirable to convert eqn. 
(1) into integral form 

(2) 
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however, the right-hand side of the equation cannot be integrated in closed 
form. 

To overcome this difficulty, the exponential integral has been solved 
using approximation methods [l], series expansion methods [2] and numeri- 
cal solution methods [3]. 

Hence, once the mathematical form of f(cw> is known the Arrhenius 
parameters can be evaluated. 

For conventional isothermal analysis a number of methods are available 
to identify the reaction mechanism, the most common being the log-log 
method [4], the reduced time method [5] and the ~~~~~~~~~~~~ vs. CYtheoretical 
plot [6]. It is usually assumed, therefore, that the isothermal mechanism 
also holds in non-isothermal experiments for a particular system. This 
eliminates the greatest advantage of the non-isothermal method in that, 
although the Arrhenius parameters can be obtained from a single rising- 
temperature curve, the isothermal experiments must still be performed 
beforehand to identify the reaction mechanism. Furthermore, it may be 
envisaged that, due to the different conditions under which the nucleation 
process occurs during the two methods, the assumption of a fixed mecha- 
nism for a particular system may not be correct. 

It is known [7] that in isothermal experiments the calculated Arrhenius 
parameters depend only slightly on the form of f(a) chosen; however, in 
the case of non-isothermal methods, the dependence is far more drastic. 
Therefore, without a method for precise determination of the reaction 
mechanism, the results produced are somewhat ambiguous. 

Various methods of computational analysis have been proposed in the 
literature for attempted identification of the decomposition mechanism 
[8-111. It would, however, be desirable to have a more effortless method of 
mechanism recognition. 

In a previous investigation [12] we demonstrated how a thermogravimet- 
ric (TG) recreation computer program could be used to gain information 
concerning thermal stability. The program calculates the TG rising temper- 
ature (a-T) data once supplied with the activation energy, pre-exponential 
factor and the mathematical form of f(a). This process may be considered 
as the reverse of rising-temperature kinetics in which the Arrhenius param- 
eters are calculated from (Y vs. temperature plots and the mechanism. 

Here we report on how this program has been used to study the effect 
the mechanism has on the decomposition curve, and how this leads to a 
quick and easy method of identifying f(a). 

EXPERIMENTAL 

All TG experiments were performed on a Du Pont 1090 work station 
coupled to a TG 951 furnace. The theoretical TG curves were obtained 
using a computer program [13] written in n~sic. 
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RESULTS AND DISCUSSION 

In isothermal reaction kinetics the first consideration in selecting the 
mechanism is to characterize the decomposition curve as acceleratory, 
deceleratory or sigmoidal, based on the position of the maximum rate 
(dcr/d&,. Considering the results obtained previously [12], it appeared 
that the maximum rate in rising temperature experiments (da/dT),, may 
also be of use in mechanism identification. 

The computer program was used to produce the curves using the 
activation energy, the pre-exponential factor, the heating rate and the 
mechanism as variables. Our observations agree with those of previous 
studies [14], in that increasing the activation energy while holding all 
variables constant resulted in the decomposition temperature being raised. 
Similarly, increasing the pre-exponential factor while holding everything 
else constant lowered the decomposition temperature, as did using slower 
heating rates. 

However, in each recreation trial, it was noted that the value of a at 
which the maximum rate ((Y,,) was obtained remained virtually constant 
for any specific reaction mechanism, regardless of the Arrhenius parame- 
ters or heating rate employed. The difference between the respective 
mechanisms can be seen more clearly by considering the derivative of the 
thermogravimetric (DTG) curves (Fig. 1). 

Considering the DTG curves allows the width of the peaks to be 
measured at a point which corresponds to half the height. This parameter 
has been termed the “half-width” and acts as an additional variable for 
describing the shape of the curves. Characteristic ranges of (Y,, for each 
of the reaction mechanisms are given in Table 1 along with reasonable 
limits for the half-width. 

However, in the above theoretical treatment the Arrhenius parameters 
and heating rates in the analysis of a particular mechanism are selected 
randomly. For a more comprehensive look at how the Arrhenius parame- 
ters affect the shape of a DTG curve for any particular mechanism a more 
organized approach is required. 

In calculating the activation energy and pre-exponential factor from the 
Arrhenius plot, it is inevitable that the data will not produce an exact 
straight line. Therefore, it is possible to draw a series of straight lines 
through the points on the graph for various ranges of (Y, and subsequently 
to obtain E and A values for each region. 

Carrying out the dehydration of calcium oxalate monohydrate under a 
dynamic flowing atmosphere of air, and using a heating rate of 10°C min-’ 
gave a,, equal to 0.76 and a half-width of 46°C. Referring to Table 1, the 
data show two possible mechanisms having an (Y,, range comparable to 
this experimentally determined value. Thus the R2 and D4 equations are 
both possibilities, with the magnitude of the half-width making the 
Ginstling-Brounshtein diffusion mechanism the most probable. 
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Fig. 1. Recreated DTG curves showing the effect of the reaction mechanism on the peak 
shape (E = 124 kJ mol-‘, A = 6.23 x 10” s-l). 

Using the conventional rising-temperature differential kinetic equation 

(da/dT)P/f( a) = k =A ewEjRT (3) 
in conjunction with the D4 mechanism produced the Arrhenius plot shown 

TABLE 1 

Reasonable limits for a,,.,= and the half-width for each reaction mechanism 

Mechanism amax Half-width (“0 

Pl Power law 1.000 
A2 Avrami-Erofeev n = 2 0.610-0.625 
A3 Avrami-Erofeev n = 3 0.623-0.630 
A4 Avrami-Erofeev n = 4 0.630-0.638 
Bl Prout-Tompkins 0.538-0.542 
R2 Contracting area 0.725-0.735 
R3 Contracting volume 0.680-0.700 
Dl One-dimensional diffusion 1.000 
D2 Two-dimensional diffusion 0.790-0.820 
D3 Three-dimensional diffusion 0.663-0.689 
D4 Ginstling-Brounstein 0.735-0.765 
Fl First-order decay 0.600-0.625 
F2 Second-order decay 0.450-0.490 
F3 Third-order decay = 0.389 

12-4 
34-12 
24-10 
10-4 
16-4 
40-18 
42-24 
50-18 
78-24 
80-38 
62-20 
60-20 
94-20 

- 
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Fig. 2. Arrhenius plot for the dehydration of calcium oxalate monohydrate at 10°C min-’ 
under an atmosphere of air using the D4 mechanism. 

in Fig. 2. The plot appears to consist of two linear regions which intersect 
around (Y = 0.05. However, it is unclear where to draw the best fitting 
straight line or lines. It was calculated from the slope of the two regions in 
Fig. 2 that, below cx = 0.05, an activation energy of 281 kJ mol-’ was 
obtained, while above this point a value of 147 kJ mold1 was seen. 
Meanwhile, drawing a single best fitting straight line through the points 
gave rise to an activation energy of 165 kJ mol-‘. Table 2 shows the E and 
A values obtained from lines drawn through various ranges of (Y in order to 
illustrate the disadvantage of extracting these parameters directly from the 
Arrhenius plot. 

Further treatment of these data allows the plotting of In A against E to 
produce the compensation plot shown in Fig. 3. Although the general 
significance of such plots is still not understood, it is known that they are a 

TABLE 2 

Arrhenius data over various ranges of the overall fraction decomposed, for the dehydration 
of calcium oxalate monohydrate 

~Kinge E (W mol-‘1 A (s-l) 

0.00-1.00 165 1.29 x 1Or6 
0.00-0.50 177 4.46 x 101’ 
0.50-1.00 125 2.46 x 101’ 
0.00-0.05 281 3.06 x 103r 
0.05-1.00 147 8.54 x 1013 
0.10-0.60 153 5.628 x 1014 
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Fig. 3. Compensation plot obtained from the Arrhenius parameters given in Table 2. 

consequence of a set of Arrhenius plots possessing a common isokinetic 
point. Therefore, drawing various straight lines through different places in 
a single Arrhenius plot appears to give rise to a “forced” compensation 
plot. 

Thus a straight-line relationship exists between In A and E allowing one 
parameter to be calculated if the other is known. This now allows the shape 
of the DTG curve to be observed as a function of kinetically related 
Arrhenius parameters rather than a random selection of values for E and 
A. 

Table 3 shows the reconstructed (Y,, and half-width values as a function 
of the kinetically related Arrhenius parameters obtained for the dehydra- 

TABLE 3 

Variation of (Y,~ and the half-width as a function of the Arrhenius parameters obtained for 
the dehydration of calcium oxalate monohydrate using the D4 mechanism 

E (kJ mol-‘) A (s-'1 ~nlax Half-width (“C) 

100 9.411 x 10’ 0.739 62.0 
110 1.883 x 109 0.742 54.0 
120 3.767 x 10” 0.746 50.0 
130 7.535 x 10” 0.748 44.0 
140 1.507 x 10’3 0.750 40.0 
150 3.016 x 1014 0.753 36.0 
160 6.033 x 10” 0.754 34.0 
170 1.207 x 10” 0.755 32.0 
200 9.663 x 10” 0.759 26.0 
250 3.096 x lo*’ 0.763 20.0 
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tion of calcium oxalate monohydrate, using the D4 mechanism. It is seen 
that (Y,, does change in a regular manner as a function of the Arrhenius 
parameters. However, the change is only slight with a 0.024 increase in 
(Y max being observed over a 150 kJ mol-’ span in activation energy. The 
half-width can be seen to alter more significantly, with increasing magni- 
tudes of the Arrhenius parameters bringing about an exponential type 
decrease in the DTG breadth. 

If it is assumed that reasonable values for the pre-exponential factor fall 
in the range 106-103’ s-l then the D4 mechanism can be characterized by 

an %ax value within the limits 0.735-0.765 and a half-width in the range 
62-20°C. 

Therefore, similar treatment of data for the other remaining mechanisms 
also allows dinstinctive limits to be observed, and it is these limits which 
are given in Table 1. 

The limitations of this identification technique involve precisely pin- 
pointing the maximum rate, and distinguishing between those mechanisms 
with similar values of cy,,. The power law and the one dimensional 
diffusion mechanism are both observed to be highly acceleratory in nature, 
each having an (Y,, of 1.000. Considering the general expression for the 
power law 

da/dt = kna(“-‘)‘” (4) 

shows that using a value of n = 0.5 produces the expression for the Dl 
mechanism 

da/dt = k/2a 

i.e. PO.5 is the same as Dl. 

(5) 

Therefore it should not be considered unusual for the two mechanisms 
to have similar values of (Y,,. Nevertheless it is still possible to distinguish 
between these two mechanisms based on the half-width, as it is observed 
that the power law produces significantly narrower DTG peaks. 

Similarly, differentiating between the various Avrami-Erofeev equations 
and the first-order expression also presents a problem. If the general 
expression is used in the integral form 

[ -ln(l - a)l”] = kt (6) 
it can be seen that Fl is also Al and, considering the data in Table 1 and 
Fig. 1, shows that increasing the value of n results in the DTG peak 
becoming taller and thinner. However, precisely distinguishing between 
these mechanisms is not as easy as in the above case, in that some overlap 
occurs between the half-width ranges of each particular mechanism. The 
value of the maximum rate may also be of some use in recognizing the 
mechanism as it is observed that higher values of IZ give rise to greater 
rates. Table 4 gives approximate ranges for the value of the maximum rate 
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TABLE 4 

Typical values of the maximum rate for the various Avrami-Erofeev equations (heating 
rate = 10°C min- ‘) 

Al (Fl) A2 A3 A4 

Maximum rate 
of range (K-l) 1.7-3.0~ lop2 3.4-6.0~ lo-* 5.0-9.0~ 10d2 6.4~ 10-2-0.12 

TABLE 5 

The effect of heating rate on the maximum rate of a reaction 

Heating rate Max. rate Heating rate 
PC min-‘1 -(K-l) PC min-‘) 

1 5.249 x 1O-2 10 
2 4.997 x 10-2 15 
5 4.740 x 1o-2 20 

E = 124 kJ mol-‘, A = 6.23 x 10” s-l, mechanism A2. 

Max. rate 
(K-l) 
4.545 x 10-2 
4.433 x 10-2 
4.355 x 10-2 

(da/W,, obtained for the various mechanisms by inputting various 
randomly obtained Arrhenius parameters into the regeneration program. It 
can be seen that, while faster rates are obtained for the mechanisms with 
higher values of n, again too much overlap is observed to make a precise 
selection. At best it may be possible to narrow down the mechanism to the 
best of two, based on the magnitude of the half-width and (da/dt),,. In 
addition, the effect of the heating rate must also be considered. Table 5 
shows the variation of the maximum rate with a change in heating rate. 

CONCLUSIONS 

It has been shown that the reaction mechanism in rising-temperature 
kinetics can be obtained by considering the value of (Y at which the 
maximum rate occurs. Each mechanism has a characteristic range of (Y,, 
which is found to be virtually constant over wide ranges of Arrhenius 
parameters and is also unaffected by the heating rate. As such, it is 
possible to identify f(cy) by simply reading the maximum rate from a DTG 
curve and correlating this value with the rising temperature thermogravi- 
metric curve. The procedure, however, fails to distinguish between the 
first-order mechanism and the various forms of the Avrami-Erofeev equa- 
tions due to the close proximity and overlapping of the (Y,, and half-width 
ranges. It is observed that differentiating between these mechanisms may 
be obtained to a certain extent by the magnitude of the maximum rate; 
however, this practice is better suited to rejection of unacceptable mecha- 



257 

nisms rather than the positive identification of a specific mathematical 
expression. 
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